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Size distribution of clusters in irreversible kinetic aggregation 

R Botet and R Jullien 
Laboratoire de Physique des Solides?, Bit 510, Universitk de Paris Sud, Centre d’Orsay, 
91405 Orsay, France 

Received 21 February 1984 

Abstract. The size distribution of clusters is derived analytically, at a given time, in a 
process of irreversible kinetic aggregation of diffusive clusters, which starts from a collection 
of a great number of individual particles. A general reduced shape is given in the scaling 
regime, where gelation does not occur. The time evolution is derived by use of 
Smoluchowski’s equation. Then a scaling reasoning allows us to find the exponents in real 
cases and a quantitative comparison is made with numerical simulations. 

1. Introduction 

There have been many attempts to understand theoretically the mechanism of kinetic 
aggregation of diff usive particles. Several simple kinetic models have been recently 
introduced on which numerical simulation as well as analytical calculations have been 
performed. The diffusion limited aggregation (DLA) model (Witten and Sander 1981, 
Meakin 1983a) considers single Brownian particles sticking one by one on a single 
immobile growing cluster. The resulting cluster has a specific fractal structure. In the 
alternative clustering of clusters (Cl C1) model (Meakin 1983b, Kolb et al 1983), clusters 
of particles as well as single particles are allowed to diffuse together and the growing 
mechanism results from the sticking of any kind of pair of clusters when they come 
in contact. It is found that the resulting clusters are much more stringy than in DLA, 

and this difference is even more pronounced when the space dimension increases 
(Jullien et a1 1984). This model seems better adapted to describe several physical 
situations, such as flocculation of aerosols, coagulation of smoke particles. . . . Another 
advantage of the model is that the time enters naturally. Up to now most of the studies 
on C1 C1 were concerned with the geometrical aspects of the aggregates. It has been 
noticed that an important characteristic of the model is the existence of a given shape 
for the size distribution of the clusters (Botet et al 1984a). There is a need to study 
analytically the size distribution of the clusters, as well as its time evolution, in such 
a model. Up to now, most of the analytical calculations of size distribution and time 
evolution in kinetic aggregation processes were mostly concerned with the gelation 
phenomenon (see e.g. Hendriks et a1 1983 and references therein). The main purpose 
of this paper is to extend these previous studies by focusing, instead, on the more 
general simple case, where gelation does not occur. In that case we will show that 
some specific scaling holds. Assuming some kinetic prescription, given by the know- 
ledge, a priori, of a scaling of the kinetic kernels, K,’s, the size distribution of clusters 
is analytically derived at a given step of the aggregation process. Using Smoluchowski’s 
kinetic equation, the general time evolution of the size distribution is derived. Then 

0305-447018411225 17 + 14$02.25 @ 1984 The Institute of Physics 2517 



2518 R Botet and R Jullien 

a scaling reasoning allows us to make precise the scaling behaviour of the KO's in real 
cases and permits a quantitative comparison with numerical simulations on C1 CI. 
This paper is organised as follows: in § 2, a simple derivation of the most probable 
size distribution is presented and applied to the case where KAi,AJ - A2"Ki, for large 
numbers i and j of particles in the clusters. In § 3, a more powerful mathematical 
treatment is presented: the averaged size distribution is calculated exactly and compared 
with the asymptotic results of § 2. In 9 4 the time evolution is derived. Then in Q 5, 
application to numerical simulations on C1 C1 is considered. A conclusion is given in 
§ 6. 

2. Simple derivation of the most probable distribution 

Let us consider, generally, a system of N particles distributed into N,  clusters. We 
denote by n k  the number of clusters containing k particles. For given N and N,, we 
consider the number of ways R{n,, n,, . . . , nN} of having a given configuration 
{n,, n2, . . . , nN} of clusters. This number is given by a multinomial distribution (Stock- 
mayer 1943): 

n{nl, n2, . . . ,  nN}=N!n(l/nk!)(Wk/k!) (1) 
k 

where w k  is the number of ways to construct a cluster of k particles from k individual 
particles. This implies that the initial size distribution is just N individual particles, 
which is the ordinary prescription. Spouge (1983a) has given a general relation relating 
these Wk's with the kinetic kernels aid, which is valid for times far from the gelation 
time (McLeod 1962): 

The dimensionless numbers a,, contain the i, j dependence of the Smoluchowski 
coefficients K ,  (Smoluchowski 1916) and are defined as usual such that the probability 
of sticking for two clusters of size i and j is proportional to a,, n, n,. Consequently 
they contain all the kinetic prescriptions of the aggregation process. In the following 
we will suupose that they verify the scaling relation 

aAl,AJ = h2"a,,. (SI 

In this first simple approach, we interpret the relation (1) as giving the number of 
configurations of N,  particles obeying quantum Maxwell-Boltzmann statistics. 

In this equivalence, the number of particles in a cluster corresponds to the energy 
of a single quantum particle so that 

N 

nk=N,  
k = l  

(the total number of quantum particles) and 
N 

knk = N 
k = l  

(the total energy of the quantum system) are the usual constraints of the microcanonical 
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ensemble. Using this correspondence, it is well known that the most probable configur- 
ation, denoted {n?,. . . , n:}, which corresponds to the maximum of Cl, is given by 

n: = (wk/k!) ea-pk (4) 
for large values of N,. In this last expression, wk/ k! corresponds to the degeneracy 
of the level of energy k, i.e. here, the number of ways of constructing a cluster of size 
k from k indistinguishable individual particles, and a and P are two Lagrange 
multipliers to be determined by the constraints (3a, b). So, given the aij it is necessary 
to determine the wk’s, to find the most probable distribution n: for given N and N,. 

Let us restrict ourselves to the case where the ai,k’s verify the relation ( S ) .  Physically 
we have to restrict the values of w to the range w < 1, since the averaged number of 
active sites in a cluster cannot grow faster than its size (Ziff and Stell 1980a) and this 
corresponds mathematically to the fact that no global solution exists if w > 1 (Leyvraz 
and Tschudi 1981, 1982). 

Assuming ( S )  and trying a power law asymptotic behaviour for the Wk’S in (2), it 
can be easily shown that 

) k-2” - w k  2a1.1 
k!ky=(jha(l/x,  1/(1-x))dx 

as long as the integral has a finite value. 
For example, if a,, = f(i’j” + i”j), we find 

Wk/k!-ZB-’(l - p ,  I - v)k-(””) 

which vanishes, at this order, for p = 1 or v = 1. This last result is very closely related 
to a derivation of Ernst et a1 (1984). 

However for atJ = ij, the wk’s have been exactly derived (Spouge 1983a): 

wk/k! = kk-2 /k ! - (2~) -1 /2k -5 /2  e .  ( 6 )  

Note that the exponential term has no physical interest here since any solution of (2) 
is defined apart from an eok factor. At first sight, the exponent -$ is rather strange 
since it does not correspond to the analytical continuation of -2w when w + 1. This 
apparent difficulty can be easily understood if we observe that for w + 1- the coefficient 
for k-2w vanishes: 2r(2 - 2 w ) / T 2 (  1 - w )  - 2( 1 - w )  + 0 when w + I - .  Thus, for ai, = i j  
the behaviour of the wk’s is given by the following term in the expansion of the w k /  k! 
for large k. We will see, in 0 3, how a more powerful mathematical treatment allows 
us to recover this result. 

Once the asymptotic behaviour of w k  is known, the expression of nk can be derived 
if the a and p Lagrange multipliers appearing in (4) are determined. The two conditions 
(3a, b)  can be written as 

where 

The last relation determines p if N and N ,  are given. It can be easily shown that 
+ N ( P )  is a monotonic decreasing function of p, going from N to 1 when p goes from 
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-CO to +CO. Thus, in a real physical clustering process, for given N, p decreases when 
N,, the number of clusters, decreases from N to 1 .  It is of physical interest to know 
if p can become negative, since, in that case, there is a finite probability for a particle 
to belong to a 'big' cluster. This depends drastically on the behaviour of r$N(0), for 
large N, which is 

4 N ( O )  - (1  - 2 w ) N / ( 2  - 2 w )  

4 N ( O )  - [ ( 2 - 2 w ) l ( 2 w ) ] - ' N 2 - 2 "  

4" - N/l% N 

for w < 4, 
for w > i, 
for w = 4. 

Thus, physically, the behaviour of the most probable size-distribution is completely 
different if w is smaller or greater than 4 (see figure 1). For w > 4, p becomes negative 
when there is still a large number (diverging with N )  of clusters; more precisely for 

N ,  = N,* - ( 2  - 2 0 ) 5 ( 2 w ) N 2 " - ' .  

Figure 1. Sketch of the shape of the function G N ( P )  in the two cases w <i, $< w < I .  

At a given step of the aggregation process, when the number of clusters becomes 
smaller than N $ ,  the size distribution's tail changes from decreasing into increasing 
exponential behaviour. This is the signature of the gelation process in the case of finite 
number of particles (see figure 2 )  and gives an alternative way to study this phenomenon 
in real cases. Nevertheless, in that case, the location of the intersection of 4N(j3) with 
N /  N,  is of non-trivial analytical nature, even if its qualitative general behaviour can 
be easily found as shown in figure 1. 

On the contrary, this phenomenon does not occur if w < 4, which precisely the case 
that we will mostly consider in this paper. In that case, we have, asymptotically, 

4 N ( P )  - (1 - 2 w Y P  when N+m,p+O.  

This leads immediately to the fact that there exists a general scaling relation for large 
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t 

Figure 2. Sketch of the shape of the size distribution in the case ;> w > 1. 

N, between the reduced distribution Nn:f N f  and a reduced number of particles 
kf c= N,kf  N ,  

Nn El Nf -fw(Nckl N )  

where 

is a reduced function, normalised at j: f w ( x )  dx = 1, independent of N and of N ,  and, 
consequently, independent of the time. Finally, let us note that this function (valid 
for x not too small) is entirely determined by the scaling relation ( S )  and that the 
knowledge of the whble analytical form of a, is not necessary. 

Let us note that for w tending to -CO, i.e. for K ,  = 0 everywhere, except for the 
smallest possible i and j ,  one recovers the exact trivial solution: 

lim f w ( x )  = S(x-  1 )  
w - - ' x  

where S(x)  is the Dirac delta function. In that case only clusters of the same size are 
allowed to stick together, as in the hierarchical model recently introduced by Botet er 
a1 (1984a) which appears here as the limit of ClCl when only the smallest clusters can 
move. 

Let us summarise now the results of this section. 
For w <0:  the size distribution function exhibits a maximum at k = 

For 0 < w < f: the size distribution is always decreasing. 
In both the above cases, i.e. for w < f, there exists a general scaling relation so that 

at different N,, i.e. at different steps of the aggregation process, the system remains 
identical to itself after a given renormalisation of the variables nk and k. An example 
of such a behaviour is precisely given by the clustering of clusters process in its scaling 
regime as described in Kolb et a1 (1983) and Botet et a1 (1984a). 

For w > f: the shape of the size distribution function inverts at a finite time, which 
is the signature of the gelation phenomenon. There are, in general, no such trivial 
global scaling laws as those considered here and the physics before and after gelation 
must be treated differently. 

[ 2 ~ / ( 2 ~  - l ) ] N f  Nc.  
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3. Exact derivation of the averaged distribution 

The main approximation of the previous treatment lies in the derivation of (4) by 
maximising the weight fl of the configuration. This implies that the number of particles 
as well as the number of clusters are large, but it is rather difficult to estimate the 
corrective terms. The aim of this section is to present a more rigorous derivation of 
such a quantity as the averaged distribution defined by 

where f l { n l ,  n2,. . . , n N }  is given by ( 1 )  and where T ( N ,  N,) designates the ensemble 
of configurations { n l ,  n,, . . . , nN} verifying (3a, b) .  The starting point is a straightfor- 
ward extension of a theorem of Fine (1959), which can be written as: 

Theorem. If A,(x) = Znro a l (n )xn  are formal polynomials, then 
N n Ai(x'y)= C xNyNC n ar(nr). 

fa1 NPO N,=O r (N,NC) 1z1 
(9) 

Note that here we avoid the problem of convergence of infinite series or products since 
we only deal with formal polynomials. Let us now introduce the partition function 

where p ={PI ,  P 2 , .  . . , P N }  is a sequence of real numbers, written here as a formal 
vector. 

Starting from the expression of fl, and using the extended theorem of Fine, the 
generating function for Z can be calculated as 

and, in a similar way, one has 

It appears that, due to the multinomial character of the distribution Cl, the generating 
function of aZ/aPk, at B =0, is proportional, up to a monomial xky, to the generating 
function of 2, and consequently (aZ/apk)(N, N,; 0) is proportional to Z(n - k, N c -  
1,O). This interesting peculiar feature allows us to write 

nk=(Wk/k!)Z(N-k, N,-  1)/z(N,  Nc), 

The set of relations (10) appears as a very useful tool for both analytical and numerical 
studies. For numerical studies, it is more convenient to rewrite the second relation of 
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( lC)  in the recurrence form 

the meaning of which is just a renormalisation of the total number of clusters. An 
example of application is given in figure 3, where nk has been calculated exactly by 
use of the recursion relations, (2) for the wk's, and (1 1) for the z ( N ,  Nc),  for N = 40 
and w = - I ,  and plotted in the reduced form (7). One can compare, on this plot, the 
shape of the most probable distribution as derived approximately in § 2 and the shapes 
of the averaged distribution for a finite total number of particles. 

N k/N 

Figure 3. Comparison between the analytical approximation form of the most probable 
distribution (formula (7)) given by the full curve and the exact averaged distribution 
obtained numerically for N = 40 and a,,, =(U)-' given by the points. 

We consider now the peculiar case at j  = In the same spirit, let us develop 
now two remarks on the mathematical structure of the sequence w k / k ! ,  which with 
the help of generating functions allows us to recover the results of § 2. The auxiliary 
generating function of w r + , / ( l  + I ) !  denoted hereafter as 4(x) ,  which appears on the 
right-hand side of the last relation of (lo), is a solution of the following set of relations, 
which can be straightforwardly derived from (2): 

2dq5ldx = (a,)2, 

4(0)= 1. 

As an example, it is very easy to derive the averaged distribution of clusters in the 
case a ,  = 1. In that case, one has a, = q5 and the solution of (1 2) is just 

+(x)=( l  -$x)-' 
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which, inserted in (1 0), gives 

( N - NE) !( N - k - 1) ! 
( N  - 1)!(N - N,- k + l)!  n2 = NJNc- 1). 

This exact expression can be compared, for 1 << NE<< N, with 

nk - ( N f /  exp(-Nck/ N )  

given by (7). 
The second remark is that the recurrence relation ( 2 )  can be rewritten as 

by introducing now the generating functions 4, d 4 l d x  and  a, in the variable ex to 
take the same notations as Hendriks et a1 (1983). These authors, in their appendix A, 
make the connection between the non-analytic singularities of generating functions of 
the form x k s )  ck eh  near x = 0- and the asymptotic behaviour of the ck's when k 
becomes large. Let us introduce the following notations: (i) ( - a )  means a term of the 
form c,x-", where c, is a real coefficient, and  x the variable considered; (ii) (-a)* 
has the same meaning, but with c, # 0. 

If we consider W k / k !  = Z, (-am)*, where a,  is an  increasing sequence of real 
numbers (all different), we get, using appendix A of Hendriks et al (1983), 

[e ( a ,  - w -  1 ) * + ( 0 ) + ( 1 ) + .  * .  =c ( a m - 2 ) * + L  ( a m -  1)*+(0 )+(1 )  + .  * .  , 
m l2 m m 

a ,  - w  - 1 @ N, a, , ,- l@N. (13) 
The last two conditions are needed since the explicit form taken for w k / k !  forbids 
logarithmic terms (if that was not the case, the log term on the left-hand side of (13) 
would induce a log2 term which cannot be cancelled; a log term on the right-hand 
side of (13) is forbidden because all the am's are different). Two cases must be 
considered according to the sign of a, -2 ;  however, we will consider only the case 
a. - 2 < 0 since it yields to the condition w < 1 as will be seen. If a,  - 2 < 0 , when x 
approaches 0 by negative values, (ao-2) *  is the dominant diverging term of the 
right-hand side of (13), and it must be cancelled by the dominant diverging term of 
the left-hand side. That is 

(fao- 1)* = (ao-  w - l)*. 

a0 = 2w. 

This relation reads 

Then the equality of the coefficients of these dominant terms gives 

(-ao)* = 2[r(2 -2w) / r2 ( i  - w)]k-2w 

which is another derivation of the formula (5), in this particular case. Meanwhile, this 
method is much more powerful than the elementary one described in § 2 and we can 
derive the following general expansion for the wk/ k !  (but it is rather tedious work): 

wk r ( 2 - 2 4  _-  - 2  k - 2 " + C  ( - 2 ~ - l ) + z  ( - U - 1 - f )  for w < 1. 
k !  P ( 1 - w )  IP I /a 1 
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Let us note that, for w = 1, this expression gives, at first order, Wk/k! -(-:) which is 
the correct result (formula (6)), so that this last derivation of the Wk'S is valid for all 
w s 1 and the apparent paradox noted in 0 2 is explained. It is interesting to note that, 
since now we know the singularities of the generating function of w k /  k!, we can derive 
from (10) the asymptotic behaviour of Z(N,+n,  N,) for large n. This leads to the 
more precise formula (for w < $1 

( 1  -2w)'-2" ~- N, ( N;c:)2"( 1 -~ k ) " - 2 w ) N L  

r ( i - 2 w )  N - -  N, N-N, n k  - 
which can be compared with the asymptotic formula (7). 

Though this method is a more powerful tool to find general corrective terms of the 
l l k  expansion of such a quantity as wk/k!, it is difficult to use it for complicated 
kernels a,,? This is related to the fact that corrective terms (and so, the transient 
physical terms) depend explicitly on the whole analytical structure of the aiJ's, contrary 
to the general dominant term (the steady-state physical one). 

4. Evolution with time 

The physical diffusion time can be introduced through Smoluchowski's equation 
(Smoluchowski 1916). This equation is usually written in terms of the concentrations 
c, = n, /  VN where V is the total volume of the system, so that c, is the proportion of 
i-clusters by unit of volume. Using the n,'s it reads 

N - k  dnk NV-=$ E K ~ ~ n t n ~  - n k  E Ki.kni + K k / 2 , k / 2 n k / 2 ( n k / 2 -  l)/2-ZKk,knk(nk - 
dt I + j = k  i = l  

(14) 
where we have considered two extra terms of importance for finite N :  the third term 
exists only if k is even and the fourth only if k < N/2.  This can be written in the more 
standard form 

1 # k / 2  i # k  

where Ki , ]  = Ka,,? Fortunately we have not to solve exactly the diffusion-time-depen- 
dent equation (15) as a whole, because we know already the most probable size 
distribution of the nk's in terms of N,. We just need an equation for dN,/dt, which 
can be exactly found by summing equation (1 5 )  for all k: 

j =  I 

Replacing n, with the help of expression (7), we have 
N E ai,jninj = 2 a ( N  - N,) 

i , j = l  

where a = e a  and 

1 = I  i = l  / , = I  
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All these sums are well convergent (because P > 0) and we find 

dNc/dt  - - a,(N - N,)(N/ Nc)2w-2 +&(NI  NC>'"-I 

giving a remarkably simple relation governing the decay of the number of clusters with 
respect to the diffusion time. The expressions for a, and P, are 

(1 - 2w)'-2" K (1 - 2w)-'"' K 
r ( i - 2 w )  7 a, = A- P w  = r(1-24 v' 

and A is the constant introduced after equation ( 5 ) .  The straightforward integration 
yields 

N,/N-[l  +(~,(1-20~)t]- ' /( ' -~").  

The most important conclusion is that for I<< Nc<< N an interesting scaling occurs, 
namely 

N,/ N - a w t - ' / ( ' - 2 w )  for w <f 
where 

a, = [(I - 2w)a, ] - ' / (1 -2w) .  

The same treatment can be performed at the gelation point w =$. One finds 

Nc/ N = exp[-(2 K t /  U)"']. 

If this is reported into (7), one finds the scaling relation 

1 nk - k-2@(kt-' /(I-'w) 

which is similar, in spirit, to conjecture 2 of Leyvraz and Tschudi (1982); equation 
(28) of Lushinikov (1973), equation (3) of Ernst et a1 (l982), with T = 2 and U = 2w - 1 
(Ernst et al's notations) which satisfies the scaling relation U + T = 2w + 1 (equation 
(13b) of Ernst et a1 (1982)). 

This general result is physically important since it tells us that only one exponent 
is needed, here the exponent w of the Smoluchowski coefficients KAi ,Aj  - A2"Ki.j, to 
find all the other exponents governing the time evolution of the system. This exponent 
depends now on the type of diffusion considered, and does not depend on the whole 
analytical form of the & j ' s  provided that the scaling relation (S) holds. 

5. Comparison with numerical simulations 

To compare the preceding results with some specific numerical simulations it is 
necessary to relate the ij dependence of the K,j, i.e. the exponent w,  to the precise 
kinetic prescriptions of the simulation. Consider, as in Kolb et a1 (1983), a system of 
kinetically growing clusters, in which each cluster of size k, before sticking another 
cluster, diffuses randomly in space of dimension d, along a trajectory of dimension d, 
(d, = 2 for the random walk) with a velocity u k  depending on its size k :  v k  - k" ( a  = -! 2 

for a perfect gas). In their motion the clusters stay rigid. Let us show how, under the 
essential assumption that some general scaling holds, in both space and time, the 
exponent w can be expressed in terms of the other exponents, which are the kinetic 
exponents d, and a and the geometrical exponents d and D, where D is the fractal 
dimension of the clusters, as measured in the simulations. 
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Using the definition of d ,  and a, the time t necessary for a cluster of size k having 
a walk of length 1 is given by 

t - ld-k-". 

In terms of a characteristic radius rk - k"D of the cluster, this becomes 

t - ld*riD".  

Let us now perform a change of length scale in the whole system, such that each length 
is rescaled by a factor b :  

1 = bl'. 

The corresponding time rescaling, to let the system be invariant, must be 
t - bd--D" t .  

We assume now that the time evolution can be described by a Smoluchowski equation 
with kinetic coefficient This equation (written correctly in terms of concentrations) 
being scale invariant, the KIJ,  which have the dimension of a volume divided by a 
time, must be rescaled as 

We conclude that the general scaling relation 

is verified in this prescription. This is exactly the scaling ( S )  with 

2 w = f f  + ( d - d , ) / D .  

Let us recall that this relation holds only in the scaling regime: in particular, the 
condition w < implies 

Q < a,  = +1 - ( d  - d,) /D.  

Let us insist that this derivation of w is only valid under the assumption that a global 
Smoluchowski equation holds to describe the kinetics of the system, which corresponds 
to some kind of mean-field-like hypothesis. 

An exact analytical expression for the &'s can be performed in our case by a 
direct argument. We define a hitching radius Rh of a cluster by the following property: 
the probability is zero that the distance between the centres of two sticking clusters is 
less than Rh( i) + Rh(j). This defines a sort of hard nucleus for a cluster. 

Because of the self-similarity of the cluster, we have either 

Rh(i)- i l l D  O r  Rh( i )  E 0. 

In the last case, the cluster is called transparent. This is a notion closely related to an 
argument of Herrmann (1984) used to determine the upper critical dimensionality of 
the mole trap model. 

If the motion of the clusters is a walk of fractal dimension d,, the quantity K,,ninJ 
which is proportional to the probability that a cluster of size i sticks a cluster of size 
j is such that 

KJV,  ix floe.jn,n, 
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where 
OC (Rh,t + Rhj)d-dw 

is a relative cross-section which, after the definition of Rh, is a compact volume of 
radius Rh,, + Rh,J in a space of dimension d - d,, and q,J is the mean relative velocity, 
which, due to the isotropy of the velocities, is given by 

q,] = (Vf  + v y .  
We conclude that 

K , ,  , q i l / D  +jIlD)d-dW(i2u +j2")1/2 

if V, - i". 
We recover here the scaling relation 

K k J '  
K , , ,  = A ( d - d ~ ) / D + u  

This kind of expression is well known in the Brownian ( d ,  = 2)  case and for compact 
( D  = d )  clusters (see e.g. Lai er a1 (1971), Hidy er a1 (1970)). 

When combining this result with the result of § 3 one obtains in the scaling regime 

N,/ N - r F Y  
with 

7 = (1 - 2 ~ ) ~ '  = D / [ D (  1 - CY) - ( d  - d,)] > 0. 

This result has been directly found through a direct mean-field scaling reasoning 
(without using Smoluchowski's equation) and gives a correct understanding of the 
time evolution of simulations of ClCl (Kolb 1984). Here, we are more concerned with 
the shape of the size distribution. Let us report some quantitative comparison with 
ClCl in two dimensions, with various exponents. In the simulations, a random walk 
has been considered, so that d, = d = 2 and thus w =;a. In figure 4 we give the fit of 
the reduced size-distribution, as directly determined, at different times, in the simulation 
with the theoretical curve 

X 

Figure 4. Comparison between the analytical reduced size-distribution (formula (7)) and 
the results of numerical simulation for d = d ,  = 2 and a = 0, - 1 ,  -2 with 1024 particles in 
a square box 128 x 128 (averaged over 20 trials). Full circles, open circles and crosses 
correspond to the simulation for a = 0, - I ,  -2 respectively. The full curves correspond 
to the analytical formula (7) with w = 0, -4, - 1. 
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In these fits there is only one adjustable parameter which is the normalisation constant 
for the numerical curves. We have conveniently rescaled the numerical curves so that 
they coincide with the theoretical curves for x = 1. One can see that the agreement is 
very good. In particular the location of the maximum, which is given here by 

x,= - 2 w / ( l - 2 w ) =  - a / ( l  - a ) ,  

is correctly recovered: for a = -:, x, = 0.5, for a = -1, x, = 0.66. Furthermore, the 
curve for a = w = 0 exhibits no maximum as is expected. However, one observes some 
discrepancies at low x in that case. This is due to the fact that the formula given for 
fw is not valid for low x. In that case, it must be replaced by a non-trivial function 
which depends on the analytical structure of the K,,,'s (for example, for Ki,, - (ij)u, it 
is easy to show that, for small x, f u ( x )  - e-axw which, for w < 0, decreases faster than 
any power of x as x tends to 0). 

6. Conclusion 

We have been able to derive the analytical form of the size distribution of clusters, 
and to make precise its time dependence, in a process of kinetic aggregation of diffusive 
clusters. All these calculations are valid in a scaling regime where all the quantities 
depend on length and time with power laws. In particular, all these results become 
wrong when gelation occurs. In that regime, we have been able to reproduce quantita- 
tively the shape of the size distribution of clusters found in numerical simulations 
of clustering of Brownian clusters. Moreover, we have been able to relate the exponent 
defining the scaling of the kinetic kernels with the exponent involved in the numerical 
simulations. This implies that scaling occurs only if large clusters do not move too 
quickly. Quantitatively, the exponent a of the speed of the clusters ( v i  - i") must be 
smaller than a critical value a,. For a <a,, a general scaling holds: the whole 
distribution of clusters is self similar for different lengths and for different times and 
the fractal dimension of the cluster has a given value, while for a > a,  the self similarity 
is broken: a big cluster starts to grow much more quickly than the others, with a 
different fractal exponent which is that of Witten and Sander (1981) as observed in 
the recent simulations of Meakin (1984), and studied in detail in Botet er a1 (1984b). 
This will be the subject of further works, both analytical and numerical, to study more 
carefully the gelation transition which occurs for a > a,. 
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